Hydrothermal synthesis of HNbWO₆/MO series nanocomposites and their photocatalytic properties

JIHUAI WU*

Institute for Materials Physical Chemistry, Huaqiao University, Quanzhou 362011, China E-mail: jhwu@hqu.edu.cn

SHU YIN Institute for Chemical Reaction Science, Tohoku University, Sendai 980-8577, Japan

YU LIN, JIANMING LIN, MIAOLIANG HUANG Institute for Materials Physical Chemistry, Huaqiao University, Quanzhou 362011, China

TSUGIO SATO Institute for Chemical Reaction Science, Tohoku University, Sendai 980-8577, Japan

MO (M = Ni, Cu and Mn) or M_2O_3 (M = Fe and Cr) were intercalated into the interlayer of HNbWO₆ by hydrothermal reaction on HNbWO₆ with 1 M soluble M(NO₃)₂ or M(NO₃)₃ aqueous solution at 120°C. © 2001 Kluwer Academic Publishers

1. Introduction

Photocatalytic reaction of layered nanocomposite semiconductors, such as splitting of water and reduction of carbon dioxide, has received special attention because of their possible application for the conversion of solar energy into chemical energy. Many studies have been carried out to enhance the photochemical activity of these catalysts. It is to be expected that the photoactivity of the semiconductor increases with the decrease of particle size since, in such a system, the distance which the photoinduced holes and electrons have to diffuse before reaching the interface decrease. Consequently, the holes and electrons can be effectively captured by the electrolyte in the solution [1]. Incorporation of semiconductor particles in the interlayer region of a lameller compound to form a nanocomposite consisting of host layers with ultrafine particles in the interlayer is a promising method for enhancing the photocatalytic activity of a semiconductor. As expected, the photocatalytic activities of incorporated semiconductors are much enhances when extremely small particles of Fe₂O₃, TiO₂ and CdS are intercalated into the interlayer of montmorillonite, layered double hydroxides, layered hydrous niobates and layered hydrous titanates [2-9].

It is considered that the preparation method and condition is an important element in enhancing photocatalytic activity of layered nanocomposite besides the choice of host and guest. In some case, semiconductor could not be effectively intercalated into the interlayer of layered compound owing to lacking of suitable methods. On the other hand, the structure and properties of nanocomposite depend on the methods and condition used in preparing the nanocomposite. In the present study, using hydrothermal method, new layered nanocomposites HNbWO₆/MO (M = Mn, Ni and Cu) and HNbWO₆/M₂O₃ (M = Cr and Fe) were synthesized and their photocatalytic activities were evaluated.

2. Experimental

2.1. Chemicals

Layered HNbWO₆ was prepared by proton exchange of LiNbWO₆ with 2 M HNO₃ at room temperature for 48 h with one intermediate replacement of the acid in between. Farinose LiNbWO₆ with particle size about $10^{-6} - 10^{-7}$ m was obtained by calcining stoichiometric mixture of Li₂CO₃, WO₃ and Nb₂O₅ at 800 °C in air for 24 h with one intermediate grinding in 12 h [10]. X-ray powder diffraction (shown in Fig. 1) proved the product to be single-phase LiNbWO₆ with a trirutiletype pattern [10].

 $[Fe_3(CH_3COO)_7(OH)(H_2O)_2]NO_3$ was prepared as follows [2]: $Fe(NO_3)_3 \cdot 9H_2O(40 \text{ g})$ was added to 24 ml of ethyl alcohol and then reacted with 70 ml of acetic anhydride in ice bath by adding in small portions. The resulting precipitate was separated and dried without purification further.

Unsupported TiO₂ (Deggusa P-25) was commercially obtained and used without further purification. Unsupported Fe₂O₃ was prepared by adding a 1 M Fe(NO₃)₃ aqueous solution (50 ml) to a 5 M NH₃ aqueous solution (500 ml) at room temperature and the precipitate was washed with water until free of NH₃ and dried at 120 °C.

^{*} Author to whom all correspondence should be addressed.

Figure 1 X-ray powder diffraction patterns of (a) trirutile LiNbWO₆, and (b) layered HNbWO₆.

2.2. Hydrothermal synthesis of HNbWO₆/MO (M = Mn, Ni and Cu) and HNbWO₆/M₂O₃ (M = Cr and Fe)

 M^{2+} (M = Mn, Ni and Cu) or M^{3+} (M = Cr and Fe) ions were incorporated into the interlayer of HNbWO₆ by hydrothermal reaction of HNbWO₆ (4 g) with 1 M M(NO₃)₂ or M(NO₃)₃ aqueous solution (40 ml) in a 100 ml container at 120 °C for 12 h. After being filtered and washed with water, the precipitate was heated at 250 °C for 3 h so as to decompose any water remained in the interlayer of HNbWO₆. The samples obtained thus were designated as HNbWO₆/Cr₂O₃, HNbWO₆/MnO, HNbWO₆/Fe₂O₃, HNbWO₆/NiO and HNbWO₆/CuO.

2.3. Synthesis of HNbWO₆/TiO^{*}₂ and HNbWO₆/Fe₂O^{*}₃

TiO₂ acidic sol was obtained by adding titanium tetraisopropoxide to 1 M HCl solution with the TiO₂/HCl molar ratio of 0.25. HNbWO₆/n-C₃H₇NH₂ was prepared by stirring HNbWO₆ (1 g) in 50 ml of 20 Vol. % n-C₃H₇NH₂/n-heptane mixed solution under reflux at 50 °C for 72 h. HNbWO₆/n-C₃H₇NH₂ was added to TiO₂ acidic sol with the TiO₂/HNbWO₆ molar ratio of 20 and the suspension was continuous stirred for 6 h at room temperature so as to incorporate TiO₂ into the interlayer of HNbWO₆. After being filtered and washed with water, the specimen was dispersed in water and irradiated with UV light from a 450 W high-pressure mercury lamp at 60°C for 12 h so as to decompose any n-C₃H₇NH₂ remained in the interlayer of HNbWO₆. The sample obtained was designated as HNbWO₆/TiO₂*.

Fe₂O₃ was incorporated into the interlayer of HNbWO₆ by irradiating the [Fe₃(CH₃COO)₇(OH) (H₂O)₂]⁺ exchanged compound with UV light from a 450 W high-pressure mercury lamp at 50 °C for 12 h. The exchanged compound was obtained by ion-exchange reaction of HNbWO₆/n-C₃H₇NH₂ (2 g) with [Fe₃(CH₃COO)₇(OH)(H₂O)₂]NO₃ (25 g) in 500 ml water at 50 °C for 72 h. The sample obtained was designated as HNbWO₆/Fe₂O₃^{*}.

2.4. Analysis

The crystalline phases of the products were identified by X-ray diffraction (Rigaku Denki Geiger-flex 2013) using graphite monochromized Cu-K_{α} radiation. The chemical compositions of the samples were determined by TG-DTA analysis (Rigaku Denki TAS 200 TG-DTA) and by inductively coupled plasma atomic emission spectroscopy (Seiko SPS-1200A) after dissolving the samples in water by adding 0.1 g samples to HCl/HNO₃ (3 : 1) mixed solutions (120 ml) and boiling for 2 h. The band gap energies of the products were determined from the onset of diffuse reflectance spectra of the powders measured by using a Shimadzu Model UV-2000 UV-VIS spectrophotometer. The specific surface areas of samples were determined by nitrogen gas adsorption method (Quantachrome Autosorb-1).

2.5. Photocatalytic reaction

Photocatalytic reaction was carried out in a Pyrex reactor of 1250 ml capacity attached to an inner radiation type 450 W high-pressure mercury lamp. The inner cell had thermostat water flowing through a jacket between the mercury lamp and the reaction chamber. The inner cell was constructed with Pyrex glass that served to filter out the UV emission with $\lambda < 290$ nm from the mercury lamp. The light with $\lambda < 400$ nm was filtered out by flowing 1 M NaNO₂ solution between the mercury lamp and the reaction chamber. The photocatalytic activities of samples were determined by measuring the volume of hydrogen gas evolved with a gas burette when the suspensions of samples were irradiated.

3. Results and discussions

3.1. Intercalation of MO and M₂O₃ into the interlayer of HNbWO₆

Fig. 2 depicts the X-ray powder diffraction patterns of (a) HNbWO₆, (b) HNbWO₆/TiO₂^{*}, (c) HNbWO₆/ Cr_2O_3 , (d) HNbWO₆/MnO, (e) HNbWO₆/Fe₂O₃^{*}, (f) HNbWO₆/Fe₂O₃, (g) HNbWO₆/NiO and (h) HNbWO₆/ CuO. The peak positions, corresponding to (110) of $HNbWO_6$, of samples (b)–(h) are almost the same as HNbWO₆ (a). But the position of (002) diffraction peaks of samples (a)–(f) are different and depend on the species in the interlayer. These results suggest that layered structures of HNbWO₆ are remained after intercalation of TiO₂, Cr₂O₃, MnO, Fe₂O₃, NiO and CuO although the interlayer distance changes. The gallery heights of HNbWO₆/TiO₂^{*}, HNbWO₆/Cr₂O₃, HNbWO₆/MnO, HNbWO₆/Fe₂O₃, HNbWO₆/Fe₂O₃, HNbWO₆/NiO and HNbWO₆/CuO determined by subtracting the HNbWO₆ layer thickness (0.76 nm) [11, 12] are 0.41, 0.31, 0.31, 0.29, 0.28, 0.29, and 0.30 nm respectively. Since the gallery height of HNbWO₆/MO and HNbWO₆/M₂O₃ are less than 0.31 nm, it is suggested that the thickness of intercalated layer are less than 0.5 nm which indicate the formation of nanocomposites. It is notable that the gallery height of HNbWO₆/Fe₂O₃^{*} after the sample is dried at 250 $^{\circ}$ C for 3 h is close to those of HNbWO₆/Fe₂O₃,. It might be due to the same structure for $HNbWO_6/Fe_2O_3^*$ and HNbWO₆/Fe₂O₃ although different preparation methods are applied.

The UV-VIS diffuse reflection spectra of (a) HNbWO₆, (b) HNbWO₆/TiO₂^{*}, (c) HNbWO₆/Cr₂O₃,

Figure 2 X-ray powder diffraction patterns of (a) HNbWO₆, (b) HNbWO₆/TiO₂^{*}, (c) HNbWO₆/Cr₂O₃, (d) HNbWO₆/MnO, (e) HNbWO₆/Fe₂O₃^{*}, (f) HNbWO₆/Fe₂O₃, (g) HNbWO₆/NiO and (h) HNbWO₆/CuO.

(d) HNbWO₆/MnO, (e) HNbWO₆/Fe₂O₃*, (f) HNbWO₆/ Fe₂O₃, (g) HNbWO₆/NiO and (h) HNbWO₆/CuO are shown in Fig. 3. According to the formula $\Delta E =$ $1240/\lambda$ (nm), the band gap energy ΔE (eV) for each specimen can be calculated by its wavelength of adsorption edges λ (nm) on its inflexion of adsorption spectra. The spectra of HNbWO₆ and HNbWO₆/TiO₂ are almost same, indicating the onset at ca 400 nm (3.1 eV). On the other hand, other HNbWO₆/MO and HNbWO₆/M₂O₃ nanocomposites show broad reflection spectra over 400-600 nm. The visible light absorption above 400 nm might be caused by the metal oxides incorporated. That different phenomena occurred on incorporated of TiO2 and other metal oxides might be due to the different in band gap energies, i.e., the different in the band gap energies of TiO₂ and HNbWO₆ is not large, but that of other metal oxides and HNbWO₆ are large. Similar phenomena were also observed in H₂Ti₄O₉/TiO₂, H₄Nb₆O₁₇/TiO₂,

Figure 3 Diffuse reflection spectra of (a) HNbWO₆, (b) HNbWO₆/TiO₂^{*}, (c) HNbWO₆/Cr₂O₃, (d) HNbWO₆/MnO, (e) HNbWO₆/Fe₂O₃^{*}, (f) HNbWO₆/Fe₂O₃, (g) HNbWO₆/NiO and (h) HNbWO₆/CuO.

 $HTaWO_6/TiO_2$, $H_2Ti_4O_9/Fe_2O_3$, $H_4Nb_6O_{17}/Fe_2O_3$ and $HTaWO_6/Fe_2O_3$ systems [7, 8].

The gallery heights, amount of the metal elements intercalated, band gap energies and specific surface area of nanocomposites are summarized in Table I.

TABLE I Gallery height, element content, band gap energy and specific area of the samples

Sample	Gallery height** (nm)	Content(M) (Wt.%)	Band gap energy (eV)	Specific surface area $(m^2 \cdot g^{-1})$
HNbWO ₆	0.21		3.04	5.99
HNbWO ₆ /TiO ₂ *	0.41	4.42	3.12	36.11
HNbWO ₆ /Cr ₂ O ₃	0.31	3.01	2.20	14.70
HNbWO ₆ /MnO	0.31	3.27	2.26	13.97
HNbWO ₆ /Fe ₂ O ₃ *	0.29	7.19	2.22	23.30
HNbWO ₆ /Fe ₂ O ₃	0.28	5.65	2.04	16.94
HNbWO ₆ /NiO	0.29	3.69	2.17	18.87
HNbWO ₆ /CuO	0.30	5.09	2.30	13.65

**Gallery heights were detremined after samples were dried at 250°C for 3 h.

Figure 4 Volume of hydrogen gas produced from 1250 ml of Vol. 10% methanol solution containing 1 g of dispersed unsupported TiO₂, unsupported Fe₂O₃, HNbWO₆, HNbWO₆/TiO^{*}₂, (c) HNbWO₆/Cr₂O₃, HNbWO₆/MnO, HNbWO₆/Fe₂O^{*}₃, HNbWO₆/Fe₂O₃, HNbWO₆/Fe₂O₃, HNbWO₆/CuO at 60 °C for 5 h under irradiation with $\lambda > 290$ nm and $\lambda > 400$ nm from a 450 W mercury arc.

The amount of the metal elements intercalated are 4.42, 3.01, 3.27, 7.19, 5.65, 3.69 and 5.09 Wt.% for HNbWO₆/TiO₂^{*}, HNbWO₆/Cr₂O₃, HNbWO₆/MnO, HNbWO₆/Fe₂O₃^{*}, HNbWO₆/Fe₂O₃, HNbWO₆/NiO and HNbWO₆/CuO nanocomposites, respectively. The higher Fe content in corporation of Fe₂O₃^{*} than that in HNbWO₆/Fe₂O₃ indicate the ion exchange of Fe³⁺, consequently incorporation Fe₂O₃ was promoted by the pre-expansion of the interlayer with C₃H₇NH₃⁺. Owing to same reason, the specific surface of HNbWO₆/MO and HNbWO₆/M₂O₃ nanocomposites are $2 \sim 3$ times greater than that of HNbWO₆ which further indicate the intercalation of metal oxides and the formation of the MO and M₂O₃ pillars.

3.2. Photocatalytic properties

Fig. 4 shows volumes of hydrogen gas produced from 1250 ml of 10 Vol.% methanol solution containing 1 g of dispersed unsupported TiO₂, unsupported Fe₂O₃, HNbWO₆, HNbWO₆/TiO₂^{*}, HNbWO₆/Cr₂O₃, HNbWO₆/MnO, HNbWO₆/Fe₂O₃^{*}, HNbWO₆/Fe₂O₃, HNbWO₆/NiO and HNbWO₆/CuO at 60 °C for 5 h under irradiating with $\lambda > 290$ nm and $\lambda > 400$ nm from a 450 W mercury arc.

All samples show photocatalytic activities to evolve hydrogen gas under the irradiation with $\lambda > 290$ nm. The amount of hydrogen gas evolved increase in the sequence, unsupported Fe₂O₃ (5 ml) < unsupported TiO₂ (10 ml) < HNbWO₆ (14 ml) < HNbWO₆/MnO (15 ml) < HNbWO₆/Fe₂O₃ (17 ml) = HNbWO₆/Fe₂O₃ (17 ml) < HNbWO₆/TiO₂^{*} (18 ml) = HNbWO₆/CuO (18 ml) < HNbWO₆/Cr₂O₃ (22 ml) = HNbWO₆/NiO (22 ml).

On the other hand, no hydrogen gas produced from TiO₂, HNbWO₆ and HNbWO₆/TiO₂ was observed under irradiation of visible light ($\lambda > 400$ nm), as expected from their ban gap energies (>3 eV). The photocatalytic activity of nanocomposites under visible light irradia-

tion is in the order

$$\begin{split} HNbWO_{6}/Cr_{2}O_{3} \ (14 \text{ ml}) > HNbWO_{6}/CuO \ (12 \text{ ml}) \\ = HNbWO_{6}/NiO \ (12 \text{ ml}) > HNbWO_{6}/MnO \ (11 \text{ ml}) \\ > HNbWO_{6}/Fe_{2}O_{3} \ (8 \text{ ml}) = HNbWO_{6}/Fe_{2}O_{3}^{*} \ (8 \text{ ml}) \end{split}$$

> unsupported Fe₂O₃ (3 ml).

The results suggested that the photocatalytic activities of Fe_2O_3 and TiO_2 are enhanced when they are intercalated in the interlayer of HNbWO₆. It indicates that the electrons and holes photoinduced from intercalated Fe_2O_3 can be effectively used for the reduction of water and oxidation of methanol, but the electrons and holes produced from unsupported Fe_2O_3 rapidly recombine. The depression of the recombination of electrons and holes might be due to electron transfer from Fe_2O_3 to host HNbWO₆. Similar results were observed in $H_4Nb_6O_{17}$, $H_2Ti_4O_9$ and HTaWO₆ systems [7, 8, 13].

It is notable that the photoactivity order of the above nanocomposites are different under irradiation with $\lambda > 290$ nm and $\lambda > 400$ nm. It might be due to the different optical characteristics and sensitivities of HNbWO₆/MO nanocomposites. It was also notable that the photocatalytic activity of HNbWO₆/Fe₂O₃ is almost the same as that of HNbWO₆/Fe₂O₃ under irradiation with $\lambda > 290$ nm or $\lambda > 400$ nm although different methods are applied to fabricate them. In view of the simplicity, convenience and start materials obtained easily for hydrothermal synthesis, it is suggested that hydrothermal synthesis methods are used to prepare layered nanocomposites more widely.

4. Conclusions

Based on above, the following conclusions may be drawn. (1) HNbWO₆/Cr₂O₃, HNbWO₆/MnO, HNbWO₆/Fe₂O₃, HNbWO₆/NiO and HNbWO₆/CuO nanocomposites were fabricated by hydrothermal reaction of HNbWO₆ with soluble $M(NO_3)_2$ or $M(NO_3)_3$ solution at 120 °C for 12 h followed by calcining samples at 250 °C for 3 h. (2) the height of MO and M_2O_3 pillars are less than 0.4 nm. The band gap energies of $HNbWO_6/MO$ and $HNbWO_6/M_2O_3$ are less than 3 eV. (3) The photocatalytic activities of $HNbWO_6/TiO_2$ and $HNbWO_6/Fe_2O_3$ nanocomposites are superior to those of unsupported TiO_2 and Fe_2O_3 , respectively. (4) HNbWO₆/Cr₂O₃, HNbWO₆/MnO, HNbWO₆/Fe₂O₃, HNbWO₆/NiO and HNbWO₆/CuO nanocomposites are capable of hydrogen gas evolution to the extent of 15-22 ml and 8-12 ml over 5 h following irradiation with $\lambda > 290$ nm and $\lambda > 400$ nm from a 450 W mercury arc in the presence of methanol as sacrificial holes acceptor.

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (No. 50082003), the Provincial Natural Science Foundation of Fujian, China (No. E992001) and the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

- 1. A. HAGFELDT and M. GRATZEL, Chem. Rev. 95 (1995) 49.
- 2. S. YAMANAKA, T. DOI and S. SAKO, *Mater. Res. Bull.* 19 (1994) 61.
- 3. O. ENENA and A. J. BARD, J. Phys. Chem. 90 (1986) 301.
- 4. H. MIYOSHI and H. YONEYAMA, J. Chem. Soc. Faraday Trans. 85 (1989) 1873.
- 5. H. YONEYAMA, S. HAGA and S. YAMANAKA, *J. Phys. Chem.* **93** (1989) 4833.
- 6. H. MIYOSHI, H. MORI and H. YONEYAMA, *Langmuir*. 7 (1991) 503.
- 7. T. SATO, Y. YAMAMOTO and S. UCHIDA, J. Chem. Soc. Faraday Trans. 92 (1996) 5089.

- 8. S. UCHIDA, Y. YAMAMOTO and T. SATO, *ibid.* 93 (1992) 3229.
- 9. T. SATO, K. MASAKI and K. SATO, J. Chem. Tech. Biotechnol. 67 (1996) 339.
- 10. V. BHAT and J. GOPALAKRISHNAN, Solid State Ionics. 26 (1988) 25.
- 11. R. P. SHANNON and C. P. PREWITT, *Acta Cryst.* **B25** (1961) 125.
- 12. E. CAZZANELLI, G. MARIOTTO and M. CATTI, Solid State Ionics. 53 (1992) 383.
- J-H. WU, S. UCHIDA, Y. FUJISHIRO, S. YIN and T. SATO, J. of Photochemistry and Photobiology A: Chemistry 128 (1999) 129.

Received 2 July 1999 and accepted 20 December 2000